Pictorial perception and culture

Jan B. Deregowski (1972)

We take it for granted that all cultures see as we see. Deregowski questions this assumption. The conventions used in western art are not recognised world-wide. Robert Laws, was a Scottish missionary working in Malawi at the end of the 19th century. He reported that natives could not easily interpret black and white photographs. They recognise parts that make up the whole, and with effort are able to combine the parts in order to see the whole picture. Mrs Donald Fraser who taught health care in Africa in the 1920's reported that the natives could not appreciate that profiles were an accurate representation of people. The natives would point out that as the picture showed only one eye, it could not be a picture of a person. Another report suggested that natives could understand 2D pictures easily enough. In this case, tribespeople were frightened when a life-size picture of an elephant was projected onto a sheet. These unsystematic reports are hardly scientific evidence upon which to draw conclusions. William Hudson, a researcher, used a much better controlled technique. He presented pictures that had the usual western depth cues.

  1. Familiar size, which suggests that an object drawn smaller than expected compared with other objects is interpreted as being in the distance. In one of Hudson's pictures a 'small' elephant is interpreted by westerners as a 'large' elephant in the distance.
  2. Overlap, which suggests that if one object obscures another, then one object is closer than another. In the Hudson picture, mentioned above, the human hunter and an antelope partly obscure the background hills. Two hills partly obscure a third hill, upon which the previously mentioned elephant stands. It is logical for westerners to conclude that the elephant is in the distance.
  3. Perspective, this is the interpretation of converging lines as meaning a constant width (perhaps a road) receding into the distance. This cue was not present in all the pictures used by Hudson.
  4. Density gradient, a rougher texture suggests closer pebbles or grass, etc., when compared with a smoother texture. Hudson omitted this cue from all of his pictures apart from one.

Hudson would ask questions like "What is closer to the man?", or "What is the man doing?". In the above described picture, the hunter appears to western eyes (brains!) as though he is about to spear the antelope, but many native Africans would say he was about to spear the elephant. This was presumably because the elephant was viewed as being on the same plane as the antelope, and thus in the line of fire. To make sure this mistake was not owing to a more basic problem; a control picture was also constructed. This depicted the objects as being on the same plane (i.e. the same distance from the observer), and all drawn in proportion to each other. This picture did not depend on western depth cues, for interpretation. Natives interpreted this picture correctly. Another control in this experiment was for the experimenter to ask the subject to name each object in the picture. This was just to make sure that any problems were not owing to the poor recognition of the objects. The sticks and modelling clay experiment.

In another test, Zambian primary school children and unskilled workers were given sticks and modelling clay. The clay could hold the sticks together. The subjects were asked to build a model as depicted in a 2D drawing. Westerners would have had no difficulty in interpreting the drawing as that of a cube, however, many Zambian subjects produced a 2D model that matched the drawing, but was not 3D! The subjects were also given Hudson's test (described above). It was found that if the a subject gave incorrect answers in the Hudson test (a two-dimensional perceiver) he was likely to build a 2D model. Likewise, a subject who correctly answered Hudson's test (a three-dimensional perceiver) would build a cube. Two-dimensional perceivers preferred a drawing of two squares joined on the same plane by a single line, rather than a western drawing of a cube, when asked to chose the drawing that best represented a model cube.

The ambiguous trident test.

A drawing of an impossible object (an ambiguous trident) was given to Zambian children to copy. The amount of time the children could see the drawing was controlled and recorded, by the lifting of a flap that hid the drawing. The children were not allowed to draw when the flap was open. After the flap was closed the children had to wait another 10 seconds before continuing. The children were also given the Hudson test. It was found that two-dimensional perceivers spent less time looking at the drawing then three-dimensional perceivers. Most westerners (three-dimensional perceivers) find it difficult to copy the ambiguous trident, owing to our knowledge of real objects interfering with what is really depicted. The Zambian two-dimensional perceivers presumably do not suffer from this interference effect and are therefore able to copy the drawing far more easily.

Gregory's test.

Richard L. Gregory of Bristol University, has designed an apparatus that can allow an objective read-out of how far away an object depicted in a picture appears to be. This ingenious device has a Polaroid filter that allows the picture to be seen by only one eye, whereas an adjustable spot of light can be seen three-dimensionally with both eyes. Hudson's pictures were displayed, using this apparatus, to African unskilled workers. The subjects were asked to adjust the light so that it appeared at the same distance as objects depicted in Hudson's pictures. Three-dimensional perceivers adjust the light in accordance with the perceived depth of objects in the pictures. This gives a variety of readings for one picture. Two-dimensional viewers (many of the Africans) gave similar readings for all the objects depicted in a picture, suggesting that they perceived the objects as if they were all the same depth. The readings for the control pictures (objects on one plane) were similar for both three-dimensional perceivers and two-dimensional perceivers.

Split Drawings

Hudson also found that African children and adults prefer pictures of elephants, viewed from above, that show most of the elephant's features (e.g. all the legs). Even though, in an overhead view of an elephant, the legs would not be visible, the Africans preferred a picture of, what appears to western eyes as, an elephant doing the splits, showing all four legs! It was mentioned above that Zambian workers prefer the split drawing representation of the model cube. Split drawings appear in cultures world-wide. American Indians of the north-western coast, people of the Sahara desert, Siberia and New Zealand, all have used the split drawing style in their art. Explanations

  1. Franz Boas suggests the split drawing style emerged as people developed their skills in making three-dimensional objects. First, the drawings could be regarded as technical drawings of the designs to be placed on the several facets of a box, for example. This style then became aesthetically pleasing, and thus was adopted as a general style of art.
  2. Claude L‚vi-Strauss suggests that the drawings represent a society's exploration of split personalities. This is often manifested by masks in rituals.

Deregowski, doubts these theories. He feels that it is difficult for one culture to understand the art of another. It seems that different cultures adopt different conventions for representing the outside world through their art. The results of the above perceptual tests support this view.

Good web site about Visual Perception

Student Helen Jeckells' notes

Your questions

2. Jan B.Deregowski: Pictorial Perception
I was wondering about 3 ethical issues-with this being more a piece of research material I found it hard to identify them, also I found the background to this study incredibly confusing-please could you give me a straight forward background theory as to WHY it was performed-carefully not confusing it with the Aim (as this is what I did!)
Hudson found that natives interpreted 2D representations of 3D images as if the depicted objects were all on one plane.  This was tested using a series of laboratory experiments.  Evidence was found to support the view that natives perceived 2D pictures of 3D scenes as if the depicted objects were indeed on one plane.  This would suggest that the ability to interpret depth cues is learnt rather than innate.


Return to Gary Sturt's home-page